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The Kramers-Kronig (KK) transform method for deriving optical rotatory dispersion (ORD) from electronic
circular dichroism (ECD) has been analyzed. Three different numerical integration methods for the KK
transform have been evaluated, and the method proposed by Ohta and Ishida has been used for further
calculations. Using this method, the quantum mechanical predictions of electronic circular dichroism (ECD)
have been converted to corresponding ORD and compared with that derived from the linear response method.
For three molecules exhibiting monosignate ORD in the nonresonant long wavelength region, the KK transform
of ECD associated with the lowest energy electronic transition is found to give ORD values close to those
obtained with the linear response method. For molecules exhibiting bisignate ORD in the nonresonant long
wavelength region, the KK transform method may not provide the correct results. In the resonant region, the
KK transform method provides a computationally economical alternative for predicting ORD. While the KK
transform method works much like sum-over-states method for ORD, the former offers convenience in
transforming the experimental ECD spectrum without the need for spectral curve fitting.

Introduction

Optical rotation is a well-known technique1 that is widely
practiced in chemical sciences, mostly for the purposes of
characterizing the samples. Optical rotatory dispersion (ORD),2

which is a measure of optical rotation as a function of
wavelength, was at one point in time a major area of research
in chemical sciences. However, ORD applications did not
develop to the level of becoming an attractive tool for structural
chemists. The development of instruments for measuring
electronic circular dichroism (ECD)3 in the ultraviolet-visible
regions with better sensitivity has for all practical purposes
diminished the role of ORD. ECD has been widely used for
structural characterization.3,4 Such characterization in the early
days was based mostly on empirical sector rules and spectra-
structure correlations, due to the absence of methods for accurate
quantitative interpretations of experimental ECD spectra.

It is well-known that ORD and ECD are related via the
Kramers-Kronig (KK) transform.5,6 Thus, if one of these two
properties is measured as a function of wavelength then the
second can be obtained, at least in principle, via a KK transform.
However, such transformation between experimental ECD and
ORD has been undertaken7 rarely, in practice.

The use of optical rotation in structural chemistry was limited
due to the lack of an obvious connection between observed
rotation and molecular structure. This situation has been
changing in the past decade at a rapid pace. Following the first
ab initio calculation of optical rotation,8 numerous advances in
quantum theoretical methods for accurately predicting optical
rotation, as summarized in recent reviews,9 have been reported.

Different levels of quantum mechanical theories, including
Hartree-Fock (HF),10 density functional theory (DFT),11 and
coupled cluster (CC),12 have been used for optical rotation
predictions. Standard quantum mechanical programs13 are now
available for predicting optical rotation, which led to increased
interest in the application of optical rotation for molecular
structure determination. If the wavelength at which optical
rotation is calculated happens to be at or near the wavelength
of an electronic transition, known as resonant region, the
quantum mechanical expression for optical rotation becomes
singular and optical rotation cannot be calculated in those
regions14 without additional considerations. To avoid singularity,
lifetimes of excited states had to be incorporated into the
expression. With the inclusion of lifetimes of excited states, it
became possible15 to predict the ORD in the resonant region
for chiral molecules of interest. Nevertheless, except for ref 15,
the limited number of quantum mechanical ORD studies
reported in the literature have either confined to nonresonant
region16 or avoided14 the resonant region.

Important quantum mechanical advances have also taken
place for predicting rotational strengths of electronic transitions,
which represent integrated ECD band areas. Here also, HF,17

DFT,18 and CC19 methods have been used for predicting ECD
intensities. With the availability of standard quantum mechanical
programs13 for ECD calculations, applications of ECD for
reliable predictions of molecular structure are beginning to
appear.20

The quantum mechanical calculations of ECD and ORD, as
undertaken currently, are however independent and use different
algorithms. However, as mentioned earlier, ECD and ORD are
related via KK transform. Then is it necessary to undertake two
separate calculations, one for ECD and another for ORD? Would
it not be possible to derive ORD from a given theoretical
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prediction of ECD? If that is possible, then how many ECD
bands have to be considered in the KK transform and what
restrictions might apply? Meijere et al.21 did use the KK
transform of theoretical ECD to obtain optical rotation at several
wavelengths, but the above-mentioned questions were not
addressed.

Similar questions apply for experimental data as well. When
experimental ORD could not be measured (as for highly
absorbing colored samples such as chiral fullerenes) is it not
possible to convert the experimental ECD into an ORD
spectrum? Since the KK transform can only be achieved with
numerical integration methods, which numerical method should
be used for converting the experimental ECD into ORD? These
questions are addressed in this work, with the objective to find
a single KK transform algorithm that can be used to convert
both experimental and theoretical ECD into ORD.

The organization of this manuscript is as follows: First the
units for ECD and ORD are discussed in order to express them
in common units. Although these units have been discussed in
the literature, individually for ECD and ORD, multiple sources
have to be consulted to see the connection between these units.
For pedagogical and reference purposes, these units are sum-
marized first to provide a single reference for future studies.
Then three different numerical integration methods available
for KK transform between ECD and ORD are summarized.
These methods are compared, for the first time, using a single
Gaussian ECD band as the test case. One method that is
convenient for obtaining the KK transform of both experi-
mental and theoretical ECD has been used for further in-
vestigations. Different situations for ORD predictions are
discussed and the ORD predictions obtained from KK transform
of ECD are compared to those obtained in direct ORD
calculations.

Methods

Circular Dichroism and Molar Ellipticity. ECD spectral
intensity is expressed4 as ellipticity in degrees as well as in L
mol-1 cm-1. The theoretical background needed to see the
connection between these units is given below. The ellipticity,
θ in radians, is defined22 as

In eq 1,ER and EL are electric field amplitudes for right and
left circularly polarized light after passing through the sample;
and R ) 2.303 A/2, whereA is the decadic absorbance. For
small values ofθ, tan θ is approximated asθ. Multiplying
the numerator and denominator of eq 1 bye(RR+RL)/2 one
obtains,23

For small values of the argument, tanh (RL - RR)/2 ∼ (RL -
RR)/2. Thus eq 2 becomes

where∆A ) AL - AR is the circular dichroism. Ellipticity can
be expressed in degrees by converting eq 3 from radians to
degrees,

Alternately, circular dichroism∆Ais given as

UsingA ) εcl, with concentrationc in mol/L, path lengthl in
cm, and extinction coefficientε in L/(mol‚cm) one obtains

which is the desired conversion between degrees and L mol-1

cm-1.
Another commonly used quantity, molar ellipticity [θ] is

defined, in units of deg L/(mol‚cm), as

In units of deg‚cm2/dmol, molar ellipticity is given as

Rotational Strength and Molar Ellipticity. The theoretically
predicted rotational strengths, which are commonly expressed
in units of 10-40 esu2 cm2, represent the integrated ECD band
areas. For thekth electronic transition, rotational strength,Rk,
is given as,4,24

whereψ0
o and ψk

o represent the ground and excited electronic
state wave functions respectively;µ̃R is the electric dipole
moment operator;m̃R is the magnetic dipole moment operator
and∆εk(λ), in units of L/(mol‚cm), is expressed as a function
of wavelengthλ. For a Gaussian band with∆εk

o as the peak
intensity,λk

o as the band center and∆k as half-width at 1/e of
peak height, the intensity distribution is given as25

Substitution of eq 10 into eq 9 gives an expression for the peak
band intensity∆εk

o as25

Using the peak intensity∆εk
o and bandwidth∆k, ECD spectral

intensity (in units of L/(mol‚cm)), at any wavelength can be
simulated with a Gaussian intensity profile (eq 10). In practice,
though, there will be several electronic transitions, so the
intensity distribution from all transitions will have to be summed
to obtain the intensity at a given wavelength. Substitution of
eqs 9-11 in to eq 8 will convert rotational strength into molar
ellipticity.

Specific Rotation and Molar Rotation. Specific rotation
[R(λ)] at wavelengthλ in units of deg‚cm3/(g‚dm) is defined
as26

tanθ )
ER - EL

ER + EL
) e-RR - e-RL

e-RR + e-RL
(1)

θ ) e(RL-RR)/2 - e-(RL-RR)/2

e(RL-RR)/2 + e-(RL-RR)/2
) tanh (RL - RR)/2 (2)

θ ) 2.303
(AL - AR)

4
) 2.303∆A

4
(3)

θ (in degrees)) 2.303∆A
4

× 180
π

(4)

∆A )
θ(in degrees)

32.988
)

θ(in millidegrees)
32988

(5)

∆ε )
θ(in degrees)

32.988cl
(6)

[θ] )
θ(in degrees)

cl
) 32.988∆ε (7)

[θ] )
θ(in degrees)

c l
) 3298.8∆ε (8)

Rk ) Im{〈ψ0
o|µ∼R|ψk

o〉〈ψk
o|m̃R|ψ0

o〉} ) 22.94×

10-40∫∆εk(λ) dλ
λ

≈ 22.94× 10-40

λk
o ∫∆εk(λ) dλ (9)

∆εk(λ) ) ∆εk
oe-[(λ-λk

o
)/∆k]2

(10)

∆εk
o )

λk
oRk

22.94∆kxπ
× 1040 (11)
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whereR(λ) is the observed rotation (at wavelengthλ) in degrees,
c is the concentration (grams of solute in 100 cm3 of solution),
and l is the path length in dm.

In quantum mechanical methods, specific rotation is obtained
as8

where M is molar mass (in g/mol) and the optical rotatory
parameterâ(λ) (in atomic units) is obtained as

where âxx, related to the electric dipole-magnetic dipole
polarizability tensor as22,27 âRâ ) -ω-1G′Râ, is given, for
example, as

In eq 15,λk ) hc/(Ek
o - E0

o) with E0
o and Ek

o representing the
unperturbed energies of ground and excited states, respectively.
It is customary to write eqs 13-15 in terms of frequencyν, but
here they are written in terms of wavelength to be consistent
with other equations. Substituting eqs 9, 14, and 15 into eq 13
gives the sum-over-states (SOS) expression for ORD in the
nonresonant region as

Molar rotation [æ(λ)], in units of (deg‚cm2/dmol), is then
defined24,26 as

The calculation of ORD in the nonresonant region using SOS
method has been reported recently.16e To calculate ORD in the
resonant region, and avoid singularity atλ ) λk in eq 16, parts
a and b, the denominator in eq 16, parts a and b has to be
modified to include the lifetimes of excited states.15 Following
Barron,22 1/(λ2 - λk

2)can be written asf + ig, wheref ) (λ2 -
λk

2)/[(λ2 - λk
2)2 + λ2Γk

2] and g ) Γkλ/[(λ2 - λk
2)2 + λ2Γk

2],
whereΓk is the full width of the band at half the maximum
height. The real part f contributes22 only to ORD while the
imaginary part contributes22 to CD. Thus, ORD becomes

The SOS expressions (eq 16b for nonresonant region only
and eq 16c for both resonant and nonresonant regions)
indicate that ORD can be obtained from a knowledge of
ECD intensities,Rk. An alternate approach to convert ECD into
ORD is to use the KK transformation as described in the next
section.

The sum in eqs 15 and 16a-c extends over infinite number
of electronic transitions. This summation over excited states can
be avoided using linear response theory.28 By incorporating
excited lifetimes into eq 15 and using linear response theory,
one can calculate15 simultaneously both ORD and ECD at
discrete wavelengths respectively as real and imaginary parts.
This approach, implemented15 in the DALTON program, is more
accurate than converting ECD into ORD using SOS or KK
transform methods.

Kramers)Kronig Transformation of Molar Ellipticity
into Molar Rotation. Both electronic circular dichroism and
optical rotation are expressed, respectively as molar ellipticity
and molar rotation, in the same units (deg cm2/dmol), before
subjecting them to KK transform. The KK transformation from
molar ellipticity [θ(µ)] (as a function of wavelengthµ) to the
molar rotation [æ(λ)] at wavelengthλ is given as24

The integration in eq 17 will be truncated to a limited region,
because it is not practical to integrate from zero to infinity.

A reviewer has suggested that the KK transform of a truncated
ECD spectrum can be shown formally as equivalent to the
truncated SOS expression. Then one might wonder about the
advantages/disadvantages of using the KK transform. A distinct
advantage can be cited for the KK transform as follows. To
convert the experimental ECD spectrum into ORD spectrum
using eq 16, parts b and c, one has to fit the experimental ECD
spectrum to some chosen (Gaussian, Lorentzian, or some other)
band profiles and extract the rotational strengths of individual
bands. Such tedious spectral curve fitting exercise, and associ-
ated inherent ambiguities, can be completely avoided in the KK
transform (vide infra), which is a clear advantage. In converting
the theoretical ECD band intensities into ORD, however, the
KK transform does require ECD spectral simulation using some
band profiles (vide infra), while SOS method (eq 16b,c) does
not (because theoretical predictions give integrated ECD band
areas, as rotational strengths).

The integral on the right-hand side of eq 17 has a singularity
at λ ) µ. To overcome this problem, different numerical
methods have been proposed for evaluating this integral. Of
these, the most often cited7 approach is that of Moscowitz24

and to a lesser extent7e is that of Emeis et al.6 Most convenient
method, which has never been used before in the circular
dichroism community, however is due to Ohta and Ishida.29 First
we will describe these three methods and compare their
performance to establish the method of choice.

Numerical Integration Methods for KK Transform. (A)
Moscowitz’s Method.24 This method assumes a Gaussian
intensity profile for ECD bands. For thekth ECD band with a
Gaussian intensity profile (eq 10), peak intensity [θk

o] and half-
width at 1/e of peak height,∆k, the ECD intensity at wavelength
µ becomes [θk(µ)] ) [θk

0]e-[(µ-µk
o)/(∆k)]2. Then the KK transfor-

mation for a system with one ECD band (labeled by the
subscriptk) becomes

For bandwidth smaller than the wavelength at band center (i.e
∆k < < µk

o), eq 18 was written24 to a good approximation as

[R(λ)] )
100R(λ)

cl
(12)

[R(λ)] ) 13.43× 10-5â(λ)

λ2M
(13)

â(λ) ) 1
3
[âxx(λ) + âyy(λ) + âzz(λ)] (14)

âxx(λ) )
1

hπc2
∑
k#0

λ2λk
2

λ2 - λk
2
Im{〈ψ0

o|µ̃x|ψk
o〉〈ψk

o| m̃x|ψ0
o〉} (15)

[R(λ)] )
4.477× 10-5

Mhπc2
∑

k

λk
2

λ2 - λk
2
Rk (16a)

[æ(λ)] ) [R(λ)] × M

100
)

4.477× 10-7

hπc2
∑

k

λk
2

λ2 - λk
2
Rk (16b)

[æ(λ)] )
4.477× 10-7

hπc2
∑

k

λk
2(λ2 - λk

2)

(λ2 - λk
2)2 + λ2Γk

2
Rk (16c)

[æ(λ)] ) 2
π∫0

∞
[θ(µ)]

µ
(λ2 - µ2)

dµ (17)

[æk(λ)] )
2[θk

o]

π ∫0

∞
e-[(µ-µk

o
)/(∆k)]2 µ

(λ2 - µ2)
dµ (18)
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The integral involved in this equation has been evaluated in
the present work using trapezoidal numerical integration by
dividing the range from 0 to (λ - λk

o)/∆k into N intervals such
that 1/N[(λ - λk

o)/∆k] ) h, as follows:

The value ofx in the summation of on the right-hand side of
eq 20 changes in increments ofh whose magnitude was chosen
to be 0.01. For a system withn ECD bands, total molar rotation
[æ(λ)] at wavelengthλ is obtained by summing over all
contributions fromn bands. That is

(B) Emeis, Oosterhoff, and deVries Method.6 The original
expressions given by Emeis et al.6 were in terms of frequencies.
Here they are rewritten in terms of wavelength. In this method,
eq 17 is rewritten as

On the right-hand side of eq 22, the first integral has a singularity
at λ ) µ. To avoid this singularity, the integral can be broken
into three parts as follows:

In practice, the integration limits of 0 and infinity cannot
be realized, so we have to restrict the integration to a finite
region, e.g., froma to b. Substituting eq 23 into eq 22, one
obtains

Emeis et al. suggested6 that these integrals can be evaluated
using a numerical procedure by dividing the range froma to b
into N equal intervals,h ) (b - a)/N, and using [θ(µ)] values
at odd multiples ofh/2 intervals as follows:

whereθ′(λ) ) {d[θ(λ)]}/dλ andθ′′′(λ) ) {d3[θ(λ)]}/dλ3; the #
sign on the summation in eq 25 indicates that the term with
n)k is omitted. Then the molar rotation at a wavelength,λ )
a + nh - h/2, is obtained by substituting eqs 25-27 into eq
24.

In the practical implementation of this method, eq 24 was
calculated for each ECD band, whose [θ(µ)] was simulated with
Gaussian intensity distribution and total molar rotation was
obtained as in eq 21 by summing over contributions from all
ECD bands. The derivatives in eq 27 have been obtained in the
present work using a 4-point numerical derivative formulas
given by Emeis et al.6

(C) Ohta and Ishida’s Method.29 The KK transform between
absorption and refractive index as discussed by Ohta and Ishida
has been adopted here for molar ellipticity and molar rotation.
The original equations29 of Ohta and Ishida, written in terms of
wavenumbers, are rewritten here in terms of wavelength.
Assuming that the ECD spectrum is available at constant
intervals of h and that the wavelengths and spectral intensities
at these intervals are labeled, respectively, asµj and [θ(µj)] with
j ) 1, 2, ...,N, eq 17 can be approximated, following Ohta and
Ishida, as

In this equation, the summation∑# signifies that the
summation uses alternate data points to avoid singularity at
λ ) µ. If the wavelengthλ, where molar rotation is to be
calculated, corresponds to an odd data number, then the
summation is carried over even data numbers. On the other hand
if the wavelength where molar rotation is to be calculated
corresponds to an even data number, then the summation is
carried over odd data numbers. Equation 28, referred to by Ohta
and Ishida as Maclaurin’s formula, is the easiest to implement
among the three methods discussed. Ohta and Ishida also
showed29 that among several numerical methods that they
evaluated, eq 28 provided least deviation from the exact KK
transform.

It should be noted that eq 28 has never been applied before
for converting ECD to ORD. In the practical implementation,
eq 28 was calculated for each ECD band, whose [θ(µ)] was
simulated with Gaussian intensity distribution and total molar
rotation was obtained as in eq 21 by summing over contributions
from all ECD bands.

Results

Comparison of the Numerical Integration Methods. We
are not aware of any previous comparison in the literature of

[æk(λ)] )
2[θk

o]

π1/2 [e-[(λ-λk
o)/(∆k)]2∫

0
(λ - λk

o

∆k
) ex2

dx -
∆k

2(λ + λk
o)]
(19)

2[θk
o]

π1/2
[e-[(λ-λk

o
)/(∆k)]2∫

0
(λ - λk

o

∆k
) ex2

dx] )

2[θk
o]

π1/2
[ ∑

x ) 0

(λ - λk
o

∆k
) - h

[e(x+h)2-[(λ-λk
o
)/∆k]2

+ ex2-[(λ-λk
o
)/∆k]2

]

2
h] (20)

[φ(λ)] ) ∑
k)1

n

[φk(λ)] (21)

[æ(λ)] ) 2
π∫0

∞
[θ(µ)]

µ
(λ2 - µ2)

dµ )

1
π[∫0

∞ [θ(µ)]
λ - µ

dµ - ∫0

∞ [θ(µ)]
λ + µ

dµ] (22)

∫0

∞ [θ(µ)]
λ - µ

dµ ) ∫0

λ-δ [θ(µ)]
λ - µ

dµ + ∫λ-δ

λ+δ [θ(µ)]
λ - µ

dµ +

∫λ+δ

∞ [θ(µ)]
λ - µ

dµ (23)

[æ(λ)] ) 1
π[∫a

λ-δ [θ(µ)]
λ - µ

dµ + ∫λ-δ

λ+δ [θ(µ)]
λ - µ

dµ +

∫λ+δ

b [θ(µ)]
λ - µ

dµ - ∫a

b [θ(µ)]
λ + µ

dµ] (24)

1

π
∫a

λ-δ [θ(µ)]

λ - µ
dµ + ∫λ+δ

b [θ(µ)]

λ - µ
dµ ≈

1

π
∑
k)1

N
#
[θ(a + kh - h/2)]

n - k
(25)

-
1

π
∫a

b [θ(µ)]

λ + µ
dµ ≈ -

1

π
∑
k)1

N [θ(a + kh - h/2)]

n + k
(26)

1
π∫λ - δ

λ+δ [θ(µ)]
λ - µ

dµ ) 1
π[-2δθ′(λ) - 1

9
δ3θ′′′(λ)] (27)

[æ(λ)] )
2

π
∫0

∞
[θ(µ)]

µ

(λ2 - µ2)
dµ ≈

(2

π)(2h)(12)∑
j

#[[θ(µj)]

λ - µj

-
[θ(µj)]

λ + µj
] (28)
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the three methods discussed above. Moscowitz’s method is
specific for Gaussian intensity distribution, while the remaining
two methods are applicable for any ECD spectral data available
at constant intervals. To provide a common data set for all three
methods, Gaussian intensity distribution is assumed for the ECD
bands that were used to obtain the numerical KK transform.
For a quantitative comparison of these methods, root-mean-
square percent difference (RMSP) will be used which is defined
as

where [φ(λi)]1 and [φ(λi)]2are the molar rotations obtained in
two different methods, 1 and 2 respectively, at wavelengthλi.
However, eq 29 can only be used to compare the methods of
Moscowitz and Ohta and Ishida, because wavelength increment
for the ORD calculations with these two methods is an integer
multiple of interval h. In the method of Emeis et al., this
wavelength increment is an odd multiple ofh/2.

To compare the three numerical methods, the KK transform
of a single Gaussian ECD band was considered as a test case
with the following parameters.λk

o ) 300 nm; [θk
o] ) 1 deg

cm2/dmol and∆k ) 20 nm; integration range) 100-500 nm.
The results are shown in Figure 1A, where traces a-c were
obtained using the methods of Moscowitz,24 Ohta and Ishida,29

and Emeis et al.,6 respectively. It is apparent that two methods,
that due to Moscowitz and that due to Ohta and Ishida, give
essentially the same result, but the third method, due to Emeis
et al., gives somewhat different results, especially at shorter
wavelengths. The root-mean-square percent difference between
Moscowitz and Ohta and Ishida’s mehods is 0.14.

To obtain further insight into the source for the differences
among these methods, individual contributions from different
terms in each of the three methods were analyzed. For this
purpose the same parameters as those used to obtain Figure 1A
were used. Molar rotation has contributions from two terms in
Moscowitz’s method (the first and second terms in eq 19), three
different terms (eqs 25-27) in the method of Emeis et al. and

two terms (the first and second terms in eq 28) in the method
of Ohta and Ishida. It is found that the major contributions to
molar rotation in all three methods (eq 20, eq 25, and the first
term in eq 28) are all identical (see Figure 1B). The contribution
from the third term (eq 27) in the method of Emeis et al. (see
Figure 1C) has a shape similar to that of the first term (eq 25)
but is of very small magnitude (maximum values of(8 × 10-3

around the band center for the band parameters used in Figure
1). Then the difference (Figure 1A) noted in the short
wavelength region between the method of Emeis et al. and other
two methods must originate from eq 26 and the second terms
in eqs 19 and 28. Contribution from the second term in eq 19
(Moscowitz’s method) isnegatiVewith its magnitude increasing
at shorter wavelengths (Figure 1D,-2.8 × 10-2 at 200 nm)
and is identical to that from the second term in eq 28 (Ohta
and Ishida’s method). The root-mean-square percent difference
between Moscowitz and Ohta and Ishida’s mehods for this
second term is 7× 10-2. Although eq 26 (method of Emeis et
al.) gives the same trend as the second terms in eqs 19 and 28,
the magnitude of the contribution from eq 26 is larger (-5.6×
10-2 at 200 nm for band parameters in Figure 1A). Thus, the
main difference between the method of Emeis et al. and the
other two methods comes from a larger magnitude contribution
from eq 26 at shorter wavelengths. From the above discussion
it can be seen that the results of Moscowitz’s method (eq 19)
are identical to those obtained with the method of Ohta and
Ishida (eq 28).

For converting theoretical ECD spectrum into ORD, one can
use KK transform (eq 19 or eq 28) or SOS expression (eq 16b,c).
The use of eq 19 requires the use of Gaussian band profiles for
ECD bands, but eq 28 can be used with any band profile. For
transforming the experimental ECD spectrum (where data are
digitized at constant intervals) into ORD, it is advantageous to
use eq 28 over SOS expression (eq 16b,c) because raw
experimental data can be used as such with eq 28. However, to
use the SOS expression (eq 16b,c), one has to fit the experi-
mental ECD spectrum to some chosen band profiles and extract
the integrated areas (rotational strengths) of individual ECD
bands, which will be influenced by the inherent ambiguities
associated with the curve fitting procedures.

Figure 1. (A) Comparison of different numerical integration methods for the KK transformation of one Gaussian circular dichroism band. Traces
a and b were obtained using eqs 28 and 19, respectively; trace c was obtained using eq 24. (B) Comparison of major contribution terms in different
numerical integration methods: eq 20 for Moscowitz’s method, eq 25 for the method of Emeis et al., and the first term in eq 28 for Ohta and
Ishida’s method. All three curves fall on top of each other, so they cannot be distinguished. (C) Contribution from the third term (eq 27) in the
method of Emeis et al. (D) Contribution from the second terms in different methods. Traces a and b were obtained from the second terms in eqs
19 and 28, respectively. Trace c was obtained from eq 26. For all of the traces, one ECD band withλk

o ) 300 nm; [θk
o] ) 1 deg‚cm2/dmol; ∆k )

20 nm, and Gaussian intensity distribution were used.

RMSP) x1

N
∑
i)1

N [ {[φ(λi)]1 - [φ(λi)]2}

0.5{[φ(λi)]1 + [φ(λi)]2}
x100]2

(29)
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From the information provided above, it can be seen that eq
28 represents a single algorithm that can be used for all of the
following needs: (a) Digitized experimental ECD can be
converted to ORD without the need for spectral curve fitting.
(b) Theoretical ECD can be converted to ORD, in both resonant
and nonresonant regions, using a chosen intensity distribution
(Gaussian, Lorentzian, etc.) for theoretical ECD spectra.

Comparison of ORD Derived from KK Transform and
Linear Response Methods.In the following sections, ORD
derived from eq 28 will be compared to that obtained from the
linear response method. For optical rotation calculations using
linear response method, this method as implemented in the
Gaussian 03 program13awas used. The same program was used
for calculating the rotational strengths of electronic transitions.
In each case, the molecular geometry was optimized at the same
theoretical level as that used for predicting rotational strengths
and optical rotation. To apply the KK transform method using
eq 28, the theoretical ECD spectra were simulated with Gaussian
band profiles with∆k ) 20 nm. Since the predicted electronic
transitions for any of the molecules considered did not occur at
shorter wavelength than 100 nm, a integration range of 100-
650 nm was used in the KK transform. In some cases where
electronic transitions included in the KK transform occurred
close to 100 nm, integration range was extended to 10-650
nm, but that did not significantly change the results shown here.

The ORD results obtained from the KK transform depend
on the number of electronic transitions used. In principle one
should use, although physically impossible, an infinite number
of electronic transitions in the KK transform. However, practical
reasons dictate that only a finite number of electronic transitions

can be used. Even in this finite number, there is no a priori
criterion to choose a certain number of electronic transitions.
For this reason, we make two choices: (a) use only the first
lowest energy electronic transition; (b) arbitrarily use the first
25 electronic transitions. There is no specific reason for choosing
25 transitions, and one could have equally chosen 10 or 50
transitions. ORD obtained with these two choices will be
compared to that obtained with the linear response method,
considering three different situations: (a) monosignate ORD
in the long wavelength region where no electronic transitions
appear; (b) bisignate ORD also in the long wavelength region
where no electronic transitions appear; (c) ORD in the resonant
wavelength region.

(A) Monosignate ORD in the Nonresonant Long WaVelength
Region. (R)-3-chloro-1-butyne.For this molecule, calculations
were carried out using B3LYP functional and four different basis
sets, namely 6-31G*, aug-cc-pVDZ, 6-311++G(2d,2p), and
aug-cc-pVTZ, and the results are shown in Table 1 and Figure
2. In this figure, trace a was obtained with linear response
method, trace b with the KK transform of ECD associated with
the lowest energy transition, and trace c with KK transform of
ECD associated with the first 25 electronic transitions. It is
apparent that the KK transform of ECD associated with lowest
energy transition yields ORD that matches nearly quantitatively
(see aug-cc-pVTZ results in Table 1) with that obtained from
linear response method; ORD magnitudes obtained from the
KK transform of ECD associated with the first 25 electronic
transitions deviate significantly (see Figure 2). The following
statement can rationalize these observations. Since ORD for (R)-
3-chloro-1-butyne in the 350-650 nm region determined from

TABLE 1: Comparison of Molar Rotations (deg‚cm2/dmol) Obtained with Linear Response and KK TransformaMethods for
(R)-3-Chloro-1-butyne

B3LYP/6-31G* B3LYP/aug-cc-pVDZ B3LYP/6-31++G(2d,2p) B3LYP/aug-cc-pVTZ

wavelength
(nm)

linear
response

KK
transform

linear
response

KK
transform

linear
response

KK
transform

linear
response

KK
transform

633 13.5 11.6 22.9 26.8 13.5 23.4 20.6 24.4
589 16.5 13.7 27.5 31.6 16.5 27.6 24.7 28.8
546 20.6 16.3 33.4 37.9 20.6 33 30.1 34.4
436 42.9 28.7 63.4 67 42.9 58.1 57.4 60.5
405 56.4 35.2 80.4 82.2 56.4 71.2 72.9 74
365 86.1 45.1 116.3 113 86.1 97.5 105.7 101.2

a Using ECD of lowest energy electronic transition.

Figure 2. Comparison of ORD for (R)-3-chloro-1-butyne obtained from linear response method (a) with those obtained from KK transform of
ECD (b, c) The calculations were performed at B3LYP/6-31G* (top left panel), B3LYP/aug-cc-pVDZ (top right panel), B3LYP/6-31++G(2d,2p)
(bottom left panel), and B3LYP/aug-cc-pVTZ (bottom right panel) level. Theoretical ECD spectra were simulated with Gaussian intensity profile
with 20 nm half-width at 1/e of peak height. Trace b was obtained from the ECD of the lowest energy electronic transition. Trace c was obtained
from the ECD of the first 25 electronic transitions.
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the KK transform of ECD associated with the first electronic
transition reproduced satisfactorily that obtained from linear
response method, the net sum of ORD contributions to this
region from all of the remaining high energy electronic
transitions must have been small (or nearly zero). When ECD
associated with a finite number of electronic transitions, beyond
the lowest energy transition, is used in the KK transform
erroneous ORD can result due to inadequate compensation
among the finite number of transitions considered.

(+)-(R)-3-Methylcyclohexanone: Calculations were carried
out for equatorial-methyl conformer in the chair form using
B3LYP functional and three different basis sets, namely 6-31G*,
aug-cc-pVDZ, and aug-cc-pVTZ. The results obtained with
6-31G* and aug-cc-pVTZ basis sets are shown in Figure 3. The
results obtained with aug-cc-pVDZ basis set are similar to those
obtained with aug-cc-pVTZ basis set and are not shown. As
before, trace a was obtained with the linear response method,
trace b with the KK transform of ECD associated with the lowest
energy transition, and trace c with the KK transform of ECD
associated with the first 25 electronic transitions. In both
calculations, the KK transform of ECD associated with the
lowest energy transition yields ORD magnitudes that are similar
to those obtained with linear response method. However, ORD
magnitudes obtained from the KK transform of ECD associated
with the first 25 electronic transitions differ significantly. In
the case of aug-cc-pVTZ calculation, a negative ORD with
increasing magnitude at shorter wavelength is obtained, which
is just opposite to that obtained with 6-31G* basis set and also
with the linear response method. These observations suggest
that, since ORD for (+)-(R)-3-methylcyclohexanone in the 350-
650 nm region determined from the KK transform of ECD
associated with the first electronic transition reproduced satis-
factorily that obtained from linear response method, the net sum
of ORD contributions to this region from all of the remaining
high energy electronic transitions must have been small. When
ECD associated with a finite number of electronic transitions,
beyond the lowest energy transition, is used in the KK transform,
erroneous ORD can result due to inadequate compensation
among the finite number of transitions considered.

(+)-(R)-3-Methylcyclopenatnone.Calculations were carried
out for equatorial-methyl conformer using B3LYP functional
and two different basis sets, namely 6-31G* and aug-cc-pVDZ,
and the results are shown in Figure 4. As before, trace a was
obtained with the linear response method, trace b with the KK
transform of ECD associated with the lowest energy transition,
and trace c with the KK transform of ECD associated with the
first 25 electronic transitions. In the B3LYP/6-31G* calculation,
the KK transform of ECD associated with either lowest energy
transition or the first 25 transitions yields ORD whose magni-
tudes are only slightly larger than those obtained with linear
response method. In the B3LYP/aug-cc-pVDZ calculation also,
the KK transform of ECD associated with either the lowest
energy transition or the first 25 transitions yields ORD
magnitudes that are only slightly different from those obtained
with the linear response method. These observations can be
rationalized by the following statement. Since ORD for (+)-
(R)-3-methylcyclopenatnone in the 350-650 nm determined
from the KK transform of ECD associated with the first
electronic transition reproduced satisfactorily that obtained from
linear response method, the net sum of ORD contributions to
this region from all of the remaining higher energy electronic
transitions must have been small.

For the three molecules considered above, it is evident that,
for monosignate ORD in the nonresonant long wavelength
region, the KK transform of ECD associated with the first lowest
energy electronic transition reproduces the ORD obtained with
linear response method quite well. However, this should not be
construed as a generally applicable result (vide infra).

(B) Bisignate ORD in the Nonresonant Long WaVelength
Region.The origin of bisignate ORD in the resonant region is
well understood because, as can be seen in Figure 1A, ORD
changes sign at the wavelength of electronic transition. One
should be aware that bisignate ORD can also occur in the
nonresonant long wavelength region, due to opposing ORD
contributions from ECD associated with different electronic
transitions situated at shorter wavelengths. To illustrate this
point, a simulated ORD resulting from a positive ECD band
centered at 300 nm and a negative ECD band centered at 200

Figure 3. Comparison of ORD for (R)-3-methylcyclohexanone obtained from linear response method (a) with that obtained from KK transform
of ECD (b, c). The calculations were performed at B3LYP/6-31G* (left panel) and B3LYP/aug-cc-pVTZ (right panel). Theoretical ECD spectra
were simulated with Gaussian intensity profile with 20 nm half-width at 1/e of peak height. Trace b was obtained from the ECD of lowest energy
electronic transition. Trace c was obtained from the ECD of the first 25 electronic transitions.

Figure 4. Comparison of ORD for (R)-3-methylcyclopentanone obtained from linear response method (a) with that obtained from KK transform
of ECD (b, c). The calculations were performed at B3LYP/6-31G* (left panel), B3LYP/aug-cc-pVDZ (right panel). Theoretical ECD spectra were
simulated with Gaussian intensity profile with 20 nm half-width at 1/e of peak height. Trace b was obtained from the ECD of lowest energy
electronic transition. Trace c was obtained from the ECD of the first 25 electronic transitions.
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nm (with magnitudes of rotational strength in 1:3 ratio) is shown
in Figure 5. Both ECD bands were assumed to have half-widths
of 20 nm at 1/e of peak height. The total ORD is seen to change
sign at 488 nm, where there is no electronic transition. Such
reversal of ORD sign, at a wavelength far from the electronic
transitions, is actually observed14b,30-32 in the experimental data
for some molecules. Such cases are problematic for theoretical
predictions, because (except for fortuitous cases) very accurate
calculations are often needed to correctly reproduce the ORD
sign reversal in the nonresonant long wavelength region. Some
examples includeâ-pinene14b,30 and 3,3,3′,3′-tetramethyl-1,1′-
spirobi[3H,2,1]-benzoxaselenole31 (spiroselenurane, for short)
and methyloxirane.32 For spiroselenurane, electronic transitions
appear at wavelengths shorter than 285 nm. However, experi-
mental ORD31 changes sign at 475 nm (Figure 6, trace d). Linear
response method calculation at B3LYP/6-31G* level (Figure
6, trace a) does predict31 sign reversal in ORD for this molecule
[which is probably fortuitous because higher level calculation
at B3LYP/6-31+G does not predict31 this sign reversal]. The
KK transform of ECD obtained at the same B3LYP/6-31G*
level, however, predicts only monosignate ORD regardless of
using the ECD associated with the first lowest energy transition
(Figure 6, trace b) or the first 25 low energy electronic transitions
(Figure 6, trace c). It is not clear how to choose the number of
electronic transitions needed to reproduce the sign reversal in
ORD and as a result KK transform approach fails here.
However, the linear response method also fails for spiro-
selenurane at B3LYP/6-31+G level. The difficulties with the
linear response method forâ-pinene14b,30 and methyloxirane32

in reproducing the bisignate ORD in the nonresonant long
wavelength region have been documented in the literature. Thus,

a correct prediction of bisignate ORD in the nonresonant long
wavelength region is a challenge for both KK transform and
linear response methods.

(C) ORD in the Resonant WaVelength Region.In the
wavelength region where electronic transitions occur, ORD
contributions from the ECD associated with transitions situated
at far away wavelengths will be secondary (unless their ECD
intensities turn out to be unusually large) compared to those
from ECD associated with transitions in the resonant region.
Therefore, for the KK transformation, it is sufficient to consider
just those electronic transitions that appear in (and perhaps, in
the immediate vicinity of) the resonant region under investiga-
tion. For ORD predictions in the resonant region, the KK
transform method might be advantageous over the linear
response method for reasons of computational time (vide infra).

One example33 for this category that is currently under
investigation is C76. Here, ORD in the resonant region obtained
from the KK transform of DFT predicted ECD is found33 to be
in agreement with that predicted using linear response method
at the same theoretical level as well as with the ORD derived
from the KK transform of experimental ECD.

Discussion

For predicting ORD in the nonresonant long wavelength
region, where no electronic transitions appear, the three simple
molecules ((R)-3-chloro-1-butyne, (R)-3-mehylcyclohexanone,
and (R)-3-methylcyclopenatnone) considered indicate that the
KK transform of ECD associated with the lowest energy
transition gives essentially the same result as that obtained from
the linear response method. It should be stressed here thatone
should not expect to see this behaVior in general and should
not expect to obtain quantitatively accurate numbers from the
KK transform of ECD associated with one electronic transition.
The same statements apply for deriving ORD using SOS method
(eq 16b,c). Nevertheless, it is interesting to note that the
magnitudes of ORD obtained this way are quite close to those
obtained in the linear response method. Since the latter method
indirectly accounts for an infinite number of electronic transi-
tions, it appears that the sum of ORD contributions from the
electronic transitions beyond the first is either nearly zero or
small. This is an important observation because if the same
behavior upholds in other molecules that also exhibit mono-
signate ORD in the nonresonant long wavelength region, then
prediction of ORD is obtained trivially from ECD of one
transition. If the sign of monosignate ORD in the nonresonant
long wavelength region is opposite to that of ECD associated
with lowest energy transition, then multiple transitions have to
be included in both KK transform and SOS methods. However,
then it is not clear how to truncate the number of electronic
transitions to be considered with these methods.

When a finite number of electronic transitions are included
in the KK transform, for the molecules considered here, the
predicted ORD is found to deviate significantly from that
obtained with linear response method. One would see the same
behavior with SOS method (eqs 16b,c), because the final result
in SOS method also depends on where the summation is
truncated. The reason for this is an inadequate compensation
among the transitions included in both KK transform and SOS
methods. As the number of electronic transitions considered is
increased, one would essentially be probing the transitions into
continuum, so the high-energy transitions occur very close to
each other. As a result the compensation among ORD contribu-
tions from these high-energy transitions becomes ill-defined.

For molecules, which fall into the category of monosignate
ORD in the nonresonant wavelength region, and also possess

Figure 5. Simulation of bisignate ORD in the nonresonant long
wavelength region. (a) ORD from positive Gaussian ECD band centered
at 300 nm. (b) ORD from negative Gaussian ECD band centered at
200 nm with a 3 times larger magnitude of rotational strength. (c) Total
ORD resulting from the overlapping contributions of parts a and b.
The ORD sign change occurs at 488 nm, Both ECD bands were
assumed to have half-width of 20 nm at 1/e of peak height.

Figure 6. Comparison of ORD for (S)-(-)-3,3,3′,3′-tetramethyl-1,1′-
spirobi[3H,2,1]-benzoxaselenole obtained from the linear response
method (a) with those obtained from the KK transform of ECD (b, c).
Trace d shows the experimental data from ref 31. The calculations were
performed at B3LYP/6-31G*. Theoretical ECD spectra were simulated
with Gaussian intensity profile with 20 nm half-width at 1/e of peak
height. Trace b was obtained from the KK transform of ECD associated
with the lowest energy electronic transition. Trace c was obtained from
the KK transform of ECD associated with the first 25 electronic
transitions.
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the same sign for ECD of lowest energy transition, the emphasis
should be on predicting the ECD of lowest energy transition
accurately. In these cases, both KK transform and SOS methods
do not yield any new information. However, to ascertain that a
given molecule belongs to this category, both experimental ORD
and ECD spectra should have been measured in the first place.

If bisignate ORD is either experimentally observed or
theoretically predicted, in the nonresonant long wavelength
region where there are no electronic transitions, then that is a
clear indication of oppositely signed ORD contributions from
two or more electronic transitions situated at shorter wave-
lengths. Such ORD pattern is difficult to predict with KK
transform and SOS methods because of the uncertainty in the
number of electronic transitions that one has to consider. A
similar difficulty exists with the linear response method as well,
because a delicate balance between opposing ORD contributions
has to be correctly reproduced in the calculations, which
amounts to predicting correct relative positions of electronic
transitions and associated rotational strengths. For such
cases,14b,30-32 it may become necessary to use higher theoretical
levels that can correctly represent the excited electronic states.

In the resonant wavelength region, ORD predictions using
the KK transform method are probably advantageous over the
linear response method. For applying the KK transform method
it is sufficient to consider only those electronic transitions that
appear in the resonant region being considered. To correctly
reproduce the ORD in the edges of that region, it might be
necessary to also include the transitions in the immediate vicinity
of that region. The linear response method, however, amounts
to including infinite number of electronic transitions, requiring
much more computational time. With the Gaussian 03 program
on a IBM P690 cluster of computers with eight processors at
the University of Illinois, optical rotation calculation at a single
wavelength for C76 using the B3LYP/6-31G* theory required
477 h of clock time. To calculate ORD at several wavelengths,
the corresponding time would be much higher. On the other
hand, the ECD calculation for the first 25 electronic transitions
required only 70 h of clock time. At the HF/6-31G* level, the
corresponding times for C76 were 80 and 57 h, respectively.
Even when OR calculation at a single wavelength required the
same amount of time as ECD calculation for several transitions,
ORD calculations using the linear response method would be
time demanding because OR calculations are required at several
wavelengths. Thus, for such large systems, KK transform
method can make ORD calculations possible in situations where
the calculation of ORD with the linear response method may
not be feasible (at least for those who do not have access to
supercomputing facilities). It should be pointed out that the
advantages mentioned in this paragraph for KK transform
method will also apply to SOS method (eqs 16b,c).

It is important to note that the magnitudes of ORD obtained
in the KK transform and SOS methods are only approximate
because of the limited number of electronic transitions used.
For quantitatively accurate estimates of ORD magnitudes, the
linear response method is to be preferred. In all three cases of
ORD mentioned above, the measurement of ORD is a pre-
requisite to identify the category to which a given molecule
belongs.

There has been considerable discussion34 in the literature
regarding the errors associated with predicted optical rotation
magnitudes. Most of these discussions are based on predicting
optical rotation magnitudes at a single wavelength, 589 nm. For
the noted differences between predicted and experimental
magnitudes, various sources such as basis set errors,35 solvent

influence,36 solute-solute interactions,37 and/or vibrational
corrections38 are being considered. However an important source
that has not been addressed thus far in the literature is the
waVelength correction. Calculated electronic transitions may
appear39 at shorter (for Hartree-Fock methods) or longer (for
B3LYP density functional methods) wavelengths, relative to the
experimentally observed transition wavelengths. As an example,
the experimental ECD spectrum40 of (+)-(R)-3-chloro-1-butyne
is compared to those predicted using B3LYP functional and
different basis sets in Figure 7. As can be seen in this figure,
B3LYP predicted positive ECD band appears at longer wave-
length, (namely 204, 215, and 213 nm respectively in 6-31G*,
aug-cc-pVDZ, and aug-cc-pVTZ calculations) compared to the
corresponding experimental band at 192 nm. In such cases the
experimentally measured optical rotation value at 589 nm does
not correspond to the calculated optical rotation value at 589
nm. Instead, calculation of optical rotation should be done at a
wavelengthshiftedfrom 589 nm, to account for the difference
between calculated and experimentally observed electronic
transition wavelengths. Such wavelength corrections are manda-
tory for quantitative comparisons but have not been addressed
to date in the literature. A problem in making wavelength
corrections is that the wavelength shift may vary for different
transitions and experimental data may be limited to a certain
region (as was the case for 3-chloro-1-butyne). In that case one
would have to estimate aneffectiVe waVelength shift. This
problem is circumvented in the ORD studies, where one can
see the trend in optical rotations as a function of wavelength
and shift the whole curve as needed in relation to the
experimental data. In fact in this manner one may be able to
determine theeffectiVe waVelength correction. As an example,
comparison of the experimental ORD (trace d, Figure 6) with
the B3LYP/6-31G* predicted ORD using linear response
method (trace a, Figure 6) for selenurane31 indicates that the
sign reversal in the experimental ORD curve occurs at 475 nm,
while that in the predicted ORD curve occurs at∼524 nm,
indicating aneffectiVe waVelength correctionof ∼49 nm. This
would mean that the experimental optical rotation at 589 nm
for this molecule is better compared to that calculated at 638
nm, not at 589 nm.

An alternate approach to determine wavelength correction is
to compare the experimental and theoretical ECD spectra and
deduce33 the wavelength shift needed for theoretical spectra to
match the corresponding experimental ECD spectra. Such
wavelength corrections should be incorporated in determining
the quantitative deviations between experimental and predicted
optical rotation magnitudes.

From the discussion in this article, it becomes apparent that
for practical applications of theoretical optical rotation predic-

Figure 7. Experimental and predicted ECD spectra for (+)-(R)-3-
chloro-1-butyne. The experimental spectrum is plotted from data taken
from ref 39. Predicted spectra were obtained with the B3LYP functional
and 6-31G*, aug-cc-pVDZ, and aug-cc-pVTZ basis sets. The ECD
spectrum obtained with the 6-31++G(2d,2p) basis set (not shown) is
identical to that obtained with the aug-cc-pVTZ basis set.
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tions, the availability of both experimental ECD and ORD is
important. If experimental ORD is not available, it can be
generated from the corresponding experimental ECD spectrum.
The advantage of KK transform (eq 28) for this purpose is that
the digitized experimental ECD data can be used as such and
the same algorithm can be used for converting theoretical ECD
into ORD in both nonresonant and resonant regions.

Conclusions

Three different numerical integration methods for the ap-
plication of KK transform have been compared and analyzed
for the first time. It was found that the methods suggested by
Moscowitz and Ohta and Ishida provide equivalent results, with
the latter method being general and suitable for converting both
experimental and theoretical ECD data. For quantum mechanical
ORD predictions, the KK transform method has been evaluated
by comparing the results obtained with KK transform and linear
response methods. For three molecules, which exhibit mono-
signate ORD in the nonresonant long wavelength region, the
KK transform of ECD associated with the lowest energy
electronic transition yielded essentially the same results as those
obtained with the linear response method. For molecules that
exhibit bisignate ORD in the nonresonant long wavelength
region, the KK transform method may not be successful. For
qualitatively reproducing the ORD in the resonant region, the
KK transform method offers the advantage of lower computa-
tional requirements. The results presented in this paper provide
a convenient approach to convert both experimentally observed
and theoretically calculated ECD spectra into corresponding
ORD, using a single KK transform algorithm. It is hoped that
these results will encourage further ORD studies both in
experimental and theoretical directions.
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